-
·
放大器各类放大类型,到底哪一种放大比较好?
(作者:百宝城 时间:2019-02-20 16:27:18 点击数: 895)
- 收藏
-
很多人在初步了解功放的时候,会被各类放大类型搞的头昏眼花。在接触过功放之后大部分朋友都知道了放大类型有A类、B类、AB类和D类。今天百宝城影音就为大家介绍一下各种类型放大的区别,是如何进行工作的。
A类
功率晶体在音乐信号的全波内都是导通的,每个放大组件(晶体管或真空管)负责放大一个「全波」(正半波与负半波相加),而且「随时持续」有足够大的电流导通,这就是A类放大。 换句话说,在A类放大中,每个放大组件是随时都在导通工作的。 依照这个定义,我们可以说凡是单端(Single-Ended)设计的放大器一定是A类,因为放大组件负责放大全波,而且随时导通,而非互补的正半波与负半波放大方式,一个放大组件工作、另一个放大组件则休息。 通常我们比较在意的是后级是否A类,因为前级所需静态电流(没有输入信号施加在电晶体基极时,流经集极的电流)很低,制作起来成本不会比其他放大类别高多少,因此几乎都是A类放大。
而后级所需静态电流高很多,不仅会消耗很大的功率,产生很多的热,还会连带增加其他成本。 因此若非必要,倒是很少厂商把后级设计为A类(通常厂商会强调纯A类,其实就是A类)。 A类放大方式由于即使没有信号输入时放大组件依然消耗电能(放大组件上的静态电流至少要输出电流峰值的二分之一),所以效率很低(大约20%),电能大部分转换成热能,耗电凶、热度高,体积大。
不过,由于组件随时保持在工作状态中,没有B类放大那种半波工作半波休息的交替互补放大所产生的交越失真(CrossoverDistortion)。 此外,由于A类放大的放大元件都拥有相同的偏压,使得放大组件的热度相同,让功率级更稳定更线性,音质表现为各类放大之冠。
另有一种A类放大,它的偏压是动态浮动的,所以称为动态A类。
B类
信号放大任务分由一对放大组件以互补(Complementary Pair)方式分别放大正半波与负半波,这一对晶体管通常一个采用NPN型晶体,另一个则采PNP型晶体。 当负责正半波的晶体工作时,负责负半波的晶体则在「休息」,由于这二个晶体管不会同时动作,而是永远处于一个动作另一个则休息的交替状态。
因此,当没有讯号输入正半波或负半波的放大组件时,放大组件就没有施加工作偏压,也就没有电流通过,放大组件等于在轮流休息状态。 等有信号输入时,放大元件才又「醒来工作」。 这种交替放大方式的好处是耗电少,电能转换效率高。
但是因为它在正半波与负半波之间轮流交替「休息/醒来」工作,也就会在正半波与负半波相交的0点区域内产生交越失真。 讲得技术些,双极功率晶体VBE低于0.6V不启动,因此小于此数值的信号都没有输出,因此造成交越失真。
AB类
综合A类放大与B类放大的优点而设计的线路,也是后级最常见的线路。 当信号没有输入放大组件时,仍然施以「适度」的工作偏压,保持「少量」电流持续通过放大组件。 或者是音乐信号小的时候采用A类放大,音乐信号大的时候就转为B类放大,这种线路设计都应该称为AB类放大。
AB类放大的好处是一方面在没有信号输入时不会消耗太多电能;另一方面则因为放大组件上随时保持少量电流,让放大组件随时「半睡半醒」,不至于发生当信号通过时「来不及醒来」的问题。 AB类放大通常可以达到50%的效率,又可以适度改善交越失真的问题,所以广为放大器设计者欢迎。 AB类放大也叫做推挽式放大。现今市面上所看到的后级放大器大部分都是AB类。
D类
这种放大方式异于A类放大、B类放大或AB类放大,它并非放大正弦波,而是先把音乐信号转成PWM(Pulse Width Modulation)或PDM(Pulse Density Modulation),再以很快的速度(目前开、关频率至少都是MHz的速度)让MOSFET做开与关的转换动作,藉以产生推动喇叭的电能,在信号输出之前还要经过低通滤波线路,把PWM还原为正弦波。 也因为放大组件做的是「Switching」开与关交换的工作,所以又称为交换式放大。
交换式放大因为放大组件不是「全开」就是「全关」,理论上不会浪费电能,因此号称效率为18%,实际上大约90%。
-
·
为什么垫材会影响声音?
(作者:百宝城 时间:2019-02-18 16:36:05 点击数: 683)
- 收藏
-
刚接触音响的朋友,一定会觉得音响有时候真的很像魔术一样吧?电源处理会影响声音,换一条线会影响声音,甚至连垫在不同的材质上面都会影响声音。这些说法听起来很神奇就算了,听觉敏锐一点的朋友其实很容易就可以分辨出这些变化产生的声音差异,这才真的神奇!到底音响是在变什么魔术啊?
在电气讯号的领域,我们已经讨论过现在的环境中充斥着高频污染(EMI, Electromagnetic Interference不论是传导或是辐射),诸如手机、计算机、无线网络等等数以MHz甚或GHz的高频,非常容易就馈入音响系统,然后与音响讯号产生调变,造成可听闻的声音变化。
所以电源、线材以及其他被动组件诸如电容电阻电感等,像是是导线在音频范围内以仪器测试根本看不出任何差异。其实真正影响声音的因素就是「通频特性」,具备能过滤不必要高频特性的组件,通常能带来更纯净更好的声音表现,就是因为减低了高频噪声对于音频范围的调变现象。
那,为什么非电气讯号的领域,诸如机壳材料、垫材甚至在器材上压上什么东西也能改变声音呢?这个就有意思了。说来所有的器材不论是扬声器或是扩大机、播放器等等,在播放音乐时都会受到播出的音乐影响而产生振动。说来很简单,大家只要在播放音乐时伸手轻触器材,大概都能感到由于音波所造成的振动。
但振动又不是电气讯号,为什么振动会影响声音呢?这就要回到电路的构成,是由各组件链接所组成,早期的电路是用支架焊接并支撑组件,也就是俗称的「搭棚」;现代的电路则是采用印刷电路板,将组件插入电路电路板进行焊接,透过板上的印刷电路连结构成电路。
当器材因为声波的推动而产生振动时,电路中的组件也会跟着振动,此外还有组件本身所产生的震动(诸如变压器),组件之间所存在的潜布/杂散电容,会由于组件因振动产生的距离变化而造成变化;这些潜布电容的变化虽然微小,但还是会在电气讯号中产生影响并调变讯号,这种现象称为「麦克风效应」(Microphonic Effect)。
所有的电子组件中,麦克风效应最明显的就是「真空管」,真空管组件体型庞大但却是「中空」(同样大体型的组件诸如电容皆为实心),又都是很容易产生振动的结构,因此麦克风效应非常明显。至于其他固态组件电路虽然相对效应较不明显,但依然无法避免麦克风效应的影响。
麦克风效应在一些振动环境下运作的产业器材甚或军事装备中,都有明确的规范与对策,以避免振动噪声对电路运作产生影响。所以在音响系统中振动会影响声音不是「玄学」而是有凭有据的,只是一般聆听情况下麦克风效应不会造成损害,所以厂家与消费者一般都不会多家注意。
不过讲究音色的音响玩家可是不会放过这些细节的,在器材下方垫上不同材质的脚垫确实能改变谐振情况,因而也可以调整音色。甚至是在器材上方压上什么材料也能压抑/改变谐振,降低声音受振动造成的渲染。当然也有可能是增加某种形态的振动,增加对音色的渲染也不一定。
只是振动对于音色的影响并没有任何可以测试的依据,任何的尝试都只有最后的试听才能确定「好不好听」。此外垫材在器材的下方不同的位置也会影响谐振形态,当然也会造成声音表现的差异,这部份就只有使用者自己多加尝试,记录不同垫放的位置对于声音有何影响,再选出合乎自己喜好的声音与相对的垫材摆设方式。
一些压在器材上方的调音产品也是基于一样的原则,只是是藉由重量来压抑振动的产生或改变振动的形态;另一方面器材本身重量愈沉重的,其麦克风效应就相对愈不明显,当然也有例外情况,不能一概而论。换个角度来说,音响器材还真的颇像乐器,若要展现出较佳的声音表现,还是需要一番「Tuning」(调音),不论是电气方面或是机械振动方面,都还是需要我们用心以对的。
-
·
为什么已经进入数码音乐时代,还是有许多人钟情于LP黑胶唱片呢?
(作者:百宝城 时间:2019-01-24 16:20:29 点击数: 962)
- 收藏
-
大家都在讨论的黑胶复兴指的是什么?为何还有那么多人在迷黑胶呢?
黑胶唱片早在1981年CD推出之后急速萎缩,到了1993年,美国市场一年的黑胶销售量仅剩下30万张,是最低点。1994年有60万张,1995年有80万张,1996年有110万张,1997年也是110万张,1998年有140万张,1999年有140万张,208年有150万张,2001年又降回120万张,2002年130万张,283年140万张,2004年降回120万张。到2005年,美国一年只剩下90万张黑胶唱片销售量。
而2007年开始成长,有100万张的黑胶销售量。从2008年开始,美国黑胶销售量逐年大幅成长,2008年有190万张销售量,2009年又成长到250万张销售量,2010年280万张,2011年3万张,2012年460万张,2013年610万张,2014年更跳跃至920万张,2015年1.100万张,2016年1.310万张,2017年1.430万张。从上述统计数字中,可以看出从2015年开始,黑胶销售成长的力道开始趋缓,不过仍然在小幅成长中。
为什么已经进入数码音乐时代,还是有许多人钟情于LP黑胶唱片呢?
这是因为黑胶唱片所发出来的声音特别迷人,甚至在许多方面还是CD所无法望其项背的。例如LP重播小提琴的优美音质音色与其演奏时的擦弦质感真的就不是CD所能够相比的,黑胶播放出来的空间感与细微的细节也是CD很难企及的。为什么LP能够发出那么迷人的声音呢?究其原因,LP没有经过如CD般把模拟信号转换成数码信号的过程应该是原因之一。LP从录音开始就是模拟母带,制成母版时也是以模拟的方式刻出密纹,这个过程里把声波的振动忠实的以机械振动的型态保存。
等到生产时,也是以压模的方式复制密纹。一直到播放时,也是以唱针这种机械方式把密纹的振动转换为声波(也就是音乐信号的电压)。从以上的程序中,我们可以理解表面上在LP的制作播放过程中,除了必须的RIAA还原程序之外,几乎没有加入任何一滴会破坏原味的水。不过,黑胶唱片的声音虽然迷人,但是它从刻片一直到重播过程中,有许多机会产生失真,或者音染。因此,黑胶虽然迷人,但严格说来并没有CD或数码音乐文件那么中性。
-
·
快低音,慢低音-神话与事实
(作者:百宝城 时间:2019-01-22 16:45:54 点击数: 672)
- 收藏
-
人们总是在谈论扬声器、放大器、前置放大器,甚至源部件的低音有多快或有多慢。特别是当两个驱动器在一个混合扬声器中配对时,你会听到动态低音扬声器与静电板的高速相比有多慢。人们经常听到这样的评论:“好吧,肯定是面板和低音扬声器之间存在速度差。没有什么比一块好的静电板快的了。希望低音喇叭跟上并不现实”。
首先,我们必须知道低音本身并不特别快。事实上,任何低音喇叭,即使是那些有重锥的低音喇叭,也能很容易地复制出每一个在低音中闪烁的速度的低音频率。所以,不要相信一堆关于低质量低音扬声器锥体导致“高速低音”的胡说八道,这是不会发生的。如果低音扬声器能够以低失真再现40Hz,那么低音扬声器启动的速度几乎是无关紧要的(当然是有原因的)。它只需要以足够快的速度加速,以匹配40Hz正弦波上最快点的40Hz上升时间。如果低音扬声器能做到这一点,它将以所需的速度前进,以便尽可能快地达到40赫兹。低音喇叭锥体不需要能够以20kHz的速度加速以产生瞬时40Hz的能量,如果你能制造一个 “快”的低音喇叭,40Hz的声音通过“慢”的低音喇叭会完全相同。
这是否意味着没有快低音和慢低音?绝对不是。它的存在,并不是因为你已经听了多年的原因和解释,当然也不是因为你在高端媒体上读到的原因解释。有理由使用更轻、质量更低的低音扬声器锥体。它们恰好是与你在印刷品上看到的不同的原因。较小的低音扬声器不能产生更快的低音,但它们确实能比较大的低音扬声器产生更高的频率,这在扬声器设计方面非常重要。你想让中频扬声器和低音扬声器与卓越的对称性、完美性以及在整个重叠区域内没有任何单一问题的相互作用相结合。这就是为什么你想要更小,更轻,“更快”的低音喇叭——不是因为它们能产生更快的低音。这个重叠区域对你对低音速度的感知是如此的关键,以至于几乎没有或根本没有对错误的容忍。累计误差的零容忍度扩展到相位、振幅、频率和时间。在低音扬声器的任何部分和中频(或面板)重叠区之间引入甚至细微的变化,就可以在低音或中低音中听到声音效果。这就是你对低音速度的感知来源。
事实上,低音速度实际上是100%的一个函数如何理想的中频和低音扬声器集成。低音线性度也非常重要;您可能会看到平坦的频率响应曲线,但扬声器仍然可以听起来像是有块状低音响应,因为中频扬声器和低音扬声器之间的相位(或其他)关系不理想。相位经常随频率变化。低音扬声器和中频喇叭实际上可以转向不同的方向,相位。当您混合使用诸如面板和动态驱动程序之类的驱动程序类型时,这尤其可能。但是,在其范围的顶部运行的大型动态驱动器(低音扬声器)和在其范围的底部运行的中型动态驱动器在其相位响应中往往会出现明显的差异。当相位(或其他)错误发生时,您会得到梳状滤波效果。这种梳状滤波导致扬声器的复杂响应(对音乐的响应)与扬声器的响应大不相同,当输入很简单时,例如用于测量“频率响应”的正弦波扫描。
为了避免在声音中产生“拍打”(加强)和“取消”效应的梳状滤波效应(这两种效应通常都是部分效应),必须对低音扬声器和中频扬声器的相位、时间域、振幅和频率性能进行“校准”。使中频或低音扬声器稍微超前或落后于其他驱动器,梳状滤波开始。你可以做一些事情来最小化它,但是你不能用某些驱动器和交叉的组合来阻止它。将动态低音扬声器与静电面板结合起来是非常困难的,因为这两个驱动器是如此的不同。你的绝对最佳镜头是使用一个主动交叉与无限可变的相位/频率,极性,时间域和振幅调整。测量它们,您可以输入动态低音扬声器和静电面板的响应延时,以实现完美的集成。使用被动交叉来实现相同的目标是非常困难的。一些设计师从多年的努力中学习到了进步,但这仍然是我能想象的最难做的事情之一。只要让动态中频和动态低音扬声器完美结合就足够了。即使是很小的误差,在低音或中低音中也会出现速度问题。
但是你想知道放大器,前置放大器或者音源部件,它们的声音听起来像是让低音更快或者更慢吗?有很多种方法可以实现这一点,但它们都涉及到改变中频扬声器和低音扬声器之间的某种关系,从而使集成以某种方式发生变化,表现为“更快”或“较慢”的低音。组件本身不会产生更快或更慢的低音;它会与扬声器交叉产生一种交互作用,从而导致您听到这种声音。其中一些相互作用在系统间是一致的,而另一些则是变色龙样的,从一个系统中的“快速”低音转变为另一个系统中的“慢速”低音。然而,如果你用电测量这个元件,它的测量结果中没有任何东西表明它是完美的,速度方面的,在低音频率下。它只需要一个小喇叭依赖相移发生时,使用一个特定的放大器,使其变色龙样。这将很难在一个前置放大器或源组件中发生——它们的签名在系统之间趋向于更加一致。
低音细节呢?为什么一个扬声器的低音细节比另一个要多得多?这也是严格的扬声器/驱动器一体化,而不是低音喇叭本身的质量,正如你可能听说的。事实上,低音细节来自中频扬声器/喇叭。但是你的耳朵/大脑完全被中音和低音的复杂互动所愚弄,以至于你相信这完全是一个低音相关的东西。它不是,你可以通过听一些非常无聊但也很有启发性的东西来证明它。独自听一段时间的低音炮。你不会听到任何类似于速度的东西从那缓慢,潮湿的声音,沉重的低音炮传来。它没有任何细节,也没有任何速度。但是,仔细地将它与一组很好的主扬声器集成在一起,突然间,低音炮有了一系列的细节,如果集成稍微关闭一点,低音也会听起来很快或很慢。所有这些速度感和细节感都来自主扬声器,但来自中频,而不是低音扬声器。这就是为什么低音扬声器和中频扬声器的集成对于获得一个好的扬声器是如此重要。
另一件要记住的事情是:活低音听起来不快也不慢;它听起来像是与任何乐器或其他音源产生的低音。“快”或“慢”低音的概念是扬声器和音响系统相关的东西。哦,我想你可以设计一个现场演示来展示弦乐贝司的中音部如何影响到它的音域底端的感知质量(据我所知,最好的音乐家可能会用这个来进一步扩大他们在演奏中的情感范围)。但在日常的听力环境中,当你听到现场音乐时,我怀疑你是否想过你听到的“快”或“慢”低音。不,这是在家里的复制链中发生的事情,它是集成错误的产物。消除集成错误,低音会像现场低音一样失去所有的快或慢的感觉。
对你来说,这意味着一些深刻的东西。如果你听到一个在低音中听起来“快”或“慢”的系统(希望不是你的),足够你已经注意到了,这个系统有问题。它可能是固定的,如果低音来自一个有很多调整的低音炮。但在大多数情况下,要去除快速或缓慢的字符,需要做一些小的或大的更改。不同的页脚会影响明显的低音速度,因为它会改变使用它的电子部件或扬声器的中频范围,而不是因为它更好地与地板或搁板耦合(或隔离)。不同的脚只是稍微改变了中音部的特征,而且由于中音部和低音部的质量是如此紧密地交织在一起,低音部的质量也会发生变化,即使低音部本身没有特别的变化。
所以你有了它,低音和中频的共生存在,它们更紧密地交织在一起,相互依赖,你可能已经想到了。
-
·
解答家用投影机的四大疑惑
(作者:百宝城 时间:2019-01-15 16:43:56 点击数: 710)
- 收藏
-
投影机必须要吊装吗?
现在有很多人一谈到家用投影机,脑子中就想到那种体积大个头大的家用投影机,并且认为家用投影机一定要吊装才可以。其实现在家用投影机有很多种,采用LED光源的微型投影机装在口袋里都可以,这种小体积的产品自然是不用吊装了。微型投影机只要摆在客厅的餐桌上就可以,甚至可以摆在床头柜上也可以,投射在房顶上就可以看到超大画面,不过想要得到更好地画质,微型投影还有很长的路要走。
其实家用投影机也可以摆在桌上使用
其实即便是采用普通灯泡光源的家用投影机,也有非常轻巧的产品。一般来说,一些1080P的家用娱乐投影机,价格在4000元到6000元的产品,体积都不是特别的大。一个女生也可以轻松抱起这样的产品,这种产品也并不用非得吊装使用,其摆在桌子上也可以轻松使用,并且占据的空间不大。
真正的高端家用投影机才必须吊装
其实真正要吊装的家用投影机往往是那种高端产品,也就是售价在20000元以上的投影机。这种高端家用投影机的体积大,因此摆放在桌面可能占据的空间太大,会影响人们的日常生活,因此需要吊装使用。其实这些产品一般都用在独立的影音室内,吊装对于这种产品来说也是相得益彰的。
用投影机亮度都不高?
很多人认为家用投影机的亮度都不高,只要不是在全黑的环境下就没法观看,其实真实的情况不是这样的。首先投影机画面亮不亮要看投射的尺寸的大小,100英寸以上的画面自然要考虑遮光的情况,如果是60英寸、70英寸的话,其实开灯观看一点问题也没有。
普通的室内环境 投影机的亮度问题并不突出
其次我们要看投影机本身的亮度配置,微型投影机的亮度低,基本亮度分布在300 ANSI到800 ANSI流明之间,这样的亮度自然是不能投射太大的尺寸,因此对于遮光条件的要求比较严格,白天观看肯定是有点力不从心。而普通灯泡家用投影机的亮度基本在1000 ANSI到2000 ANSI流明之间,这种产品如果不是投射太大的尺寸,其实晚上开光观看一点问题也没有。
激光光源反射式超短焦产品亮度表现不错
还有一种激光反射式超短焦(又称激光电视)投影机,亮度能到2000 ANSI流明以上,这样的产品配合抗光幕,即便是在环境光复杂的客厅也可以看到非常不错的画面表现。当然目前激光电视的价格比较高,并不太适合普通的家庭用户采购。
投影距离一定要很远吗?
房间小就不能购买家用投影机吗?过去这可能是一个真理,但是随着微型投影机以及超短焦产品的出现,显然现在小房间也可以购买家用投影机了。
反射式超短焦投影(激光电视)不需要很长的投影距离
首选我们要客观的考虑,在一个小房间内,用户到底需要多大的画面尺寸,因为如果画面尺寸太大的话,其实由于房间小,坐在房间内观看画面的效果并不好。我们都知道,在电影院内最靠近屏幕的一段距离都是不设置座位的。所以一个小房间,其实用户要求的画面尺寸并不会特别大。
家用投影机一定很贵吗?
家用投影机一定非常的贵吗?过去家用投影机确实不便宜,1080P的产品很多都要万元的水平,一般的用户可能无法轻易购买。但是随着投影机技术的发展,其实投影机的实际采购价格已经大大的下降了。入门级的投影机目前价格仅仅是几千元的水平,和购买一台液晶电视的价格差不多。
家用投影机这几年的变化比较大,没有经常关注这个市场的人来说,一时间还拎不清各种产品的关系。很多人也是依靠自己了解的教育投影机以及商务投影机的经验来判断家用投影机的发展,其实家用投影机有自己的独特之处。很多传统的投影机采购常识已经不适合这个市场。
-
·
功放的6种保护功能以及常见的故障维修方法
(作者:百宝城 时间:2019-01-14 17:05:23 点击数: 732)
- 收藏
-
功放的六种保护功能:
1、软启动保护
在大电流吸取量的音响设备,接通电源的瞬间其流过的电流值可以达到其平均电流值的4-10 倍时,对电网和设备本身都是一个冲击,严重的时候会损坏设备。
此时软启动电路能在设备开关的瞬间抑制电流的涌入量,让它平稳的达到正常起到保护设备和不引起电网波动的作用。通常用热敏电阻(NTC)的负温度特性来实现这个功能。
2、直流保护
当功放输出级发生损坏时或静态偏置发生偏移时都有可能输送出直流信号。而对于扬声器来说,它的工作方式只对交流信号产生阻抗,对于直流信号它不产生任何的阻抗(等于零阻抗),这时的电流就为无穷大,因此扬声器的线圈在直流信号下就等同于一根发热丝会被迅速烧毁。
因此准确快速的直流保护电路是非常重要的。功放的直流保护启动值通常设定在 2V,当大于或等于这个值的时候功放会切断输出,保护扬声器。当然,也有功放将会用烧断内置的直流保险丝的方式来切断输出。
如果一台功放的直流保护电路是正常的,但是扬声器的线圈给烧掉了,只有两个原因:输入到扬声器的功率过大,或者功放输出的信号产生削顶变成方波。
3、短路保护
当功放输出级发生损坏时或静态偏置发生偏移时都有可能输送出直流信号。而对于扬声器来说,它的工作方式只对交流信号产生阻抗,对于直流信号它不产生任何的阻抗(等于零阻抗),这时的电流就为无穷大,因此扬声器的线圈在直流信号下就等同于一根发热丝会被迅速烧毁。
因此准确的快速的直流保护电路是非常重要的。功放的直流保护启动值通常设定在 2V,当大于或等于这个值的时候功放会切断输出,保护扬声器。当然,也有功放将会用烧断内置的直流保险丝的方式来切断输出。
如果一台功放的直流保护电路是正常的,但是扬声器的线圈给烧掉了,只有两个原因:输入到扬声器的功率过大,或者功放输出的信号产生削顶变成方波。
4、过流保护
当功放的负载太低但又没有达到短路状态,这时候短路保护不会动作,但输出的电流会非常之大超过功放的安全使用值,这时候过流保护电路就会介入工作,通常的做法是:控制输入电压和输出电流,让功放始终工作在在安全范围内。
5、过热保护
设计优良的功放在正常使用的情况下,不会出现过热保护,只有当外部使用环境恶劣或内部发生故障的时候才会动作。整台功放最热的地方就是输出级晶体管的C极(集电极),因此过热保护的温度感应器一般安装在离晶体管的 C 极最近地方或散热器上最热的地方。
过热保护的阀值一般为95℃,也有105℃,晶体管的极端承受温度是105℃。
6、失真压限器
音响设备的输入电平值都有一个规定的范围,如果超出这个范围,信号就会产生削顶,严重的时候会变成方波。失真限幅器的作用是保证输入信号的电平始终控制在音响设备允许的线性工作区范围内。一般的标准是THD1%时启动。
附: 功放常见的故障维修
1、整机不工作
整机不工作的故障表现为通电后放大器无任何显示,各功能键均失效,也无任何声音,像未通电时一样。
检修时首先应检查电源电路。可用万用表测量电源插头两端的直流电阻值(电源开关应接通),正常时应有数百欧姆的电阻值。若测得阻值偏小许多,且电源变压器严重发热,说明电源变压器的初级回路有局部短路处;若测得阻值为无穷大,应检查保险丝是否熔断、变压器初级绕组是否开路、电源线与插头之间有无断线。有的机器增加了温度保护装置,在电源变压器的初级回路中接人了电流保险丝(通常安装在电源变压器内部,将变压器外部的绝缘纸去掉即可见到),它损坏后也会使电源变压器初级回路开路。
若电源插头两端阻值正常,可通电测量电源电路各输出电压是否正常。对于采用系统控制微处理器或逻辑控制电路的放大器,应着重检查该控制电路的供电电压(通常为+5V)是否正常。
如无+5V电压,应测量三端稳压集成电路7805的输入端电压是否正常,若输入端电压不正常,应检查整流、滤波电路。若7805输入端电压正常,而输出端无十5V电压或电压偏低,可断开负载看+5V电压能否恢复正常。若+5V电压正常,则故障在负载电路;若+5V电压仍不正常,则故障在7805本身。
若系统控制电路的+5V供电电压正常,应再检查微处理器的时钟及复位信号是否正常、键控与显示驱动电路有无损坏。
2、无声音输出
无声故障表现为操作各功能键时,有相应的状态显示,但无信号输出。
检修有保护电路的放大器时,应看开机后保护继电器能否吸合。若继电器无动作,应测量功放电路中点输出电压是否偏移、过流检测电压是否正常。若中点输出电压偏移或过流检测电压异常,说明功率放大电路有故障,应检查正、负电源是否正常。若正、负电压不对称,可将正、负电源的负载电路断开,以判断是电源电路本身不正常还是功放电路有故障所致。若正、负电源正常,应检查功放电路中各放大管有无损坏。
若功放电路中点输出电压和过流检测电压均正常,而保护继电器不吸合,则故障在保护电路,应检查继电器驱动集成电路或驱动管有无损坏、各检测电路是否正常。若继电器触点能吸合,但无声音输出,应先检查扬声器是否正常、继电器触点是否接触良好、静噪电路是否动作。
若上述部分均正常,再用信号干扰法检查故障是在功放后级还是前级电路。用万用表的R×1挡,将红表笔接地,黑表笔快速点触后级放大电路的输入端,若扬声器中有较强的“喀喀”声,说明故障在前级放大电路;若扬声器无反应,则故障在后级放大电路。
对于未采用外设保护电路的集成电路功放电路(通常在集成电路内部有热保护),可先测量其供电电压正常与否。若供电电压正常,再用信号干扰法检查:在功放集成电路的信号输入端加入直流断续信号,若扬声器有较强的“喀喀”声,说明功放集成电路正常,故障在前级放大电路;若无“喀喀”声,而且检查有关外围元件也正常,则故障在功放集成电路本身。
电子管功放无声音输出,也应先检查其电源,观看灯丝是否亮,管壳温度是否正常。若灯丝不亮,管壳很凉,应检查功放管灯丝及屏极电压正常与否。若电压不正常,再进—步检查电源电路,必要时应断开电源负载电路,以确定是电源电路故障还是负载有短路。若各电压正常,可在音量电位器的中心头加入直流断续干扰信号,若有较强反应,说明后级放大电路正常,故障在前级放大电路;反之,故障在后级放大电路。可分别在推动管的栅极和输入放大管的栅极加入干扰信号,在哪—级加干扰信号无反应,说明该级后面的电路工作不正常。对可疑元件(如电子管)可用代换法检修。
具有杜比环绕声解码功能的AV放大器,若在杜比环绕声状态肘各声道均无声而直通状态下主声道声音正常,在电源电路正常的情况下,通常是杜比环绕声解码电路或系统控制电路工作不正常。若在环绕声和直通模式下各声道均无声,应检查系统控制电路、信号选择电路和总音量控制电路。
3、音轻
所谓音轻故障,是指音频信号在放大传输过程中,因某个放大级放大量变化或在某个环节被衰减,使放大器的增益下降或输出功率变小。
检修时,首先应检查信号源和音箱是否正常,可用替换的办法来检查。然后检查各类转换开关和控制电位器,看音量能否变大。
若以上各部分均正常,应判断出故障是在前级还是在后级电路。对于某一个声道音轻,可将其前级电路输出的信号交换输入到另一声道的后级电路,若音箱的声音大小不变,则故障在后级电路;反之,故障在前级电路。
后级放大电路造成的音轻,主要有输出功率不足和增益不够两种原因。可用适当加大输入信号(例如将收录机输出给扬声器的信号直接加至后级功放电路的输入端,改变收录机的音量,观察功放输出的变化)的方法来判断是哪种原因引起的。
若加大输入信号后,输出的声音足够大,说明功放输出功率足够,只是增益降低,应着重检查继电器触点有无接触电阻增大、输入耦合电容容量减小、隔离电阻阻值增大、负反馈电容容量变小或开路、负反馈电阻阻值增大或开路等现象。
若加大输入信号后,输出的声音出现失真,音量并无显著增大,说明后级放大器的输出功率不足,应先检查放大器的正、负供电电压是否偏低(若只是一个声道音轻,可不必检查电源供电)、功率管或集成电路的性能是否变差、发射极电阻阻值有无变大等。
前级电路中转换开关、电位器所造成的音轻,采用直观检查较易发现,可对其进行清洗或更换。如怀疑某信号耦合电容失效,可用同值电容并联试之;放大管或运放集成电路性能不良,也可用代换法检查。另外,负反馈元件有问题,也会造成电路增益下降。
4、噪声大
放大器的噪声有交流声、爆裂声、感应噪声和白噪声等。
检修时,应先判断噪声来自于前级还是来自于后级电路。可把前、后级的信号连接插头取下,若噪声明显变小,说明故障在前级电路;反之,故障在后级电路。
交流声是指听感低沉、单调而稳定的100Hz交流哼声,主要是电源部分滤波不良所致,应着重检查电源整流、滤波和稳压元件有无损坏。前、后级放大电路电源端的退耦电容虚焊或失效,也会产生一种类似交流声的低频振荡噪声。
感应噪声是成分较复杂且刺耳的交流声,主要是前级电路中的转换开关、电位器接地不良或信号连线屏蔽不良所致。
爆裂声是指间断的“劈啪”、“咔咔”声,在前级电路中,应检查信号输入插头与插座、转换开关、电位器等是否接触不良,耦合电容有无虚焊、漏电等。后级放大电路应检查继电器触点是否氧化、输入耦合电容有无漏电或接触不良。另外,后级电路中的差分输入管或恒流管软击穿,也会产生类似电火花的“咔咔”噪声。
白噪声是指无规则的连续“沙沙”声,通常是由前、后级放大电路中的输入级晶体管、场效应管或运放集成电路的性能不良产生的本底噪声,检修时,可用同规格的元件代换试之。
5、失真
失真故障是某放大级工作点偏移或功放推挽输出级工作不对称所致。检修时,可根据放大器输出功率与失真的变化情况,来判断具体的故障部位。
电子管放大器若失真的同时输出功率变小(音轻),应检查是否推挽功放中某一放大管衰老、工作点不对或输出变压器局部短路造成其工作不平衡;若失真的同时输出功率变大,多是负反馈电路中的电阻变值、电容失效或阴极自生偏压的旁路电容短路所致。
晶体管放大器若失真随着音量的增大而明显增大,应检查推动级某只晶体管的工作点是否偏移(通常发生在无保护电路的功放中)或反馈电路中的电容失真;若无论音量大小均有失真,则故障在前级放大电路,应检查各放大管的工作点有无偏移。
集成电路放大器的工作电压异常或功放集成电路内部损坏,也会造成失真(指无保护电路的机器)。
6、啸叫
啸叫故障是电路中存在自激所致,又分为低频啸叫和高频啸叫。
低频啸叫是指频率较低的“噗噗”或“嘟嘟”声,通常是由于电源滤波或退耦不良所致(在啸叫的同时往往还伴有交流声),应检查电源滤波电容、稳压器和退耦电容是否开路或失效,使电源内阻增大。功放集成电路性能不良,也会出现低频啸叫故障,此时集成电路的工作温度会很高。
高频啸叫的频率较高,通常是放大电路中高频消振电容失效或前级运放集成电路性能变差所致。可在后级放大电路的消振电容或退耦电容两端并接小电容来检查。另外,负反馈元件损坏、变值或脱焊时,也会引起高频正反馈而出现高频啸叫。
-
·
怎样避免音响设备老化以及让声音更靓
(作者:百宝城 时间:2019-01-07 16:58:45 点击数: 768)
- 收藏
-
在音响设备使用的过程中,由于空气中的氧、水、光、热等因素,无可避免的会令设备老化。音响设备老化之后,就会影响到声音的重现,令原本清晰自然的声音蒙上一层纱。那么,我们要怎么样避免音响设备老化以及让声音更靓呢?
方法一:每半年全面清洗接点一次
大家都知道,金属暴露于空气中不久,表层就会有氧化现象,失去光泽,变得暗哑。即使讯号线插头表面经过镀金处理后,已不易氧化,与机身插头又有紧密接触,但日子久了,仍然会有一定程度的氧化导致接触不良,所以最多隔半年就要清洁一次。只要用棉花沾上酒精涂抹接点便可以了,做完这重工夫之后,可以令接点回复最佳接触,声音也随之清晰、透明一点。
方法二:清洗CD机激光唱头
显然激光唱头只有那么一小点的面积,但全靠它读取CD碟上的记号,因此唱头上只要黏附上极少的微尘都足以影响读取信号的精确度。虽然CD机大都有密封的机身,但别忘记在经常出碟入碟的过程中就有空隙让灰尘乘虚而入了,一段日子下来,唱头表面定然留有或多或少的灰尘,这时便要拧开机盖螺丝,打开机盖直接用棉花棒点上酒精清洗。市面上虽然有各种清洗CD碟,但是你花了几十元,那些所谓洗CD碟可能只是靠一排刷去扫掉灰尘或者是利用绒面之类靠转动来除尘,效果比不上直接用棉花棒彻彻底。当你那部久未洗头的CD机清洁完毕之后,再听时会令人有掀开一层纱的感觉,而高频回复旧日的清晰,细节也动听多了。这个清洗唱头的步骤大概要一年做一次,就算是使用Pioneer的反转式唱盘系统(镭射头向下而非向上),灰尘仍会被唱头所带的静电吸引而黏附其上,所以这工夫也还是不能省的。
方法三:尽量避免机叠机
基于环境问题而要将器材叠起来摆放原本无可奈何,到有条件时,就应尽量将最主要的CD讯源及扩音部分独立来摆放,因为重叠摆放会导致谐震而影响机器。当喇叭播放音乐时,震动空气令到器材跟随震动,两部机相叠便会互相传道谐震,令到音乐中的微细讯息模糊不清,并且干扰各频段的传送,造成一种声音的污染,又如其中一部是CD机,自身播放碟时马达连转又加剧了谐震幅度,影响就更大。所以要把器材独立置放在稳固机架之上。
方法四:分体供电与主机、单声道后级之间保持距离
现今连不少中价前级都有一个盒仔大小的分体供电,简单地将火牛与主机分开为两部分,好处自然是可将机内零件与火牛之间可能引起的干扰隔离。若将分体供电器置放在前级旁边,那就有点失去意义了,赶快将它远离前级,如放在另一层的机架,实时便可听到整体的隔度有所提高,音像也会准确一些。单声道的后级亦然,有条件的两件器材分开一点摆放,保证有利无害。
方法五:干扰越少声音越靓
室内的家用电器及计算机应避免与音响共享一组电源,即使要放在一起也应从别处获取电源。其次让接线纠缠在一起也会令线与线之间互相吸收噪声破坏音质。无论是器材还是连接线,都应该保持不受其他电器或者电源线的干扰。
方法六:喇叭摆位
喇叭的摆放是音响使用中重要的一环,摆得不好难免令回放效果大打折扣。如何在房间中找到最好的摆放位置颇考人功夫,除了不断细心聆听不同摆放位置的效果外,还可以请相关的专家来进行指导。
方法七:昏暗环境有助聆听效果
关了灯来听音乐是一个习惯上的问题,可说与回放扯不上关系,只是在漆黑的环境之下,耳朵会特别灵敏,而且减低了视觉上的障碍,对音响画面重组以及乐器的位置感便会格外感觉清楚明确,气氛之佳与开亮灯时更相去颇远,还可以用其他一些比较幽暗的灯光来营造听音氛围。
方法八:吸音
在一般的家庭环境之内,家私杂物已经是上好的吸音材料,大可不必把吸音搞得太繁复,铺一张地毯已经有基本的加强吸音效果。加上地毯的好处是可以减少地板的反射声,避免混和正面传来的声音造成混浊,想知道自己的房间是否需要加上地毯,铺在地上测试声音有何变化便知晓了。喇叭距离后墙太近时,也可以考虑加一幅挂毯以增加吸音效果,但要注意不可用太大块,否则可能连超高频也吸掉。另外,房间的玻璃及镜面都会有较强的反射声音作用,需要用窗帘来遮挡以解决问题。要求高的朋友更不妨在墙角位及室内的声音反射点上多做些吸音功夫,但要注意吸音不可过分,适量的反射声是有助声音生猛活泼的。
-
·
低音炮的那些事儿
(作者:百宝城 时间:2018-12-27 16:18:58 点击数: 797)
- 收藏
-
经常有人在论坛资讯影院器材升级的问题,而每每都能看到在回复里面最常见的,莫过于更换一门好炮!作为家庭影院系统中不重要的组成部分,大家对低音炮又有多少的了解呢?
低音炮是我们的俗称,准确地说它叫超低音音箱,负责再生电影音效中20~120Hz部分的的低频音效,用来补足主音箱不足的低频量感受,或无法达到的低频、极低频领域。为了照顾部分低频羸弱的箱子,当然上限也可以去到160Hz甚至200HZ。当然部分高端产品甚至还可以去到更低频率。
从是否内置放大器来说,低音炮分两种,一种是主动式低音炮,另外一种是被动式低音炮。绝大部分民用低音炮都是主动式低音炮,或者叫有源低音炮。
若是以箱体设计区分的话,大致可以分为低频反射式设计、带通式设计、传输线式设计等。
若是以发声方向来区分,可分为朝正面发声、朝后面发声、朝地面发声、朝上面发声以及朝左右二面发声等。
常见低音炮设置选项都比较简单,一般只有音量、分频点和相位,而少部分高端的低音炮除了内置功放之外,还设计了DSP系统,除了以上选项,还可以针对性的针对低音炮所处空间的问题,进行专业设置于调控,以达到更优的效果,当然这种设计的炮价格也相当昂贵。
一般来说,密闭式低音炮和倒相式(低音反射式)低音炮是最为普遍的,也是一般用户使用最多的低音炮类型。一般来说。这种形式的低音炮瞬态反应快,且能够承受较大功率,箱体体积也可以做的比较小。
倒相式(低音反射式)低音炮箱体本身有一个或一个以上低音反射孔,让箱体内的低音单元前波可以经由低音反射孔传出箱体外,与低音单元的正波相混合,增强低频的量感。失真比较低,承受功放比较大。
与密闭式箱体比较,低音反射式的最低截上频率可以更低,不过瞬间反应和力度感就没有密闭式箱体那么快、那么有力,例如PB-1000、PB-2000、PB12-Plus和PB13-Ultra,强劲的低频量感和低频下潜深度是这类低音炮的特点。用通俗的话说就是更加澎湃。
目前市面上比较多的都是以主动式的低音炮比较多,主动式低音炮内置有放大器,可以为低音炮提供强劲的功率。大功率不只是为了大音量,更重要的是提供更有控制力的低频。
既然内置了放大器,低音炮就需要通过连线AV功放获得低电平音乐讯号。以主动式低音炮为例,绝大多数的低音炮在输入输出方面上都具备RCA和平衡接口。
功能调节,是低音炮的必备设定,一般来说都具有音量调节、相位调节和低通滤波调节。相位调节就是从0-270°或者0-180°的连续或分段调节。为什么需要相位调节?简单的说,当超低音单元发出的低频与其它音箱所发出的低频混合时,如果二者的相位一致或接近,则总低频量感是二者相加的总和。反之,如果二者的相位相反或接近相反时,总低频量感就会是相减。
理论上当炮与主箱和中置在同一横线上时,其低频相位应该跟主箱和中置相同或接近。实际上很多因素无法将炮放置在与主箱和中置同一横线上,而是放于角落或侧面较多,此时可能炮所发出的声音相位就会与其它声道不同,具备有相位调节就可以地行调整。当然这个功能不能盲目调节,最好有相关声场测试仪在检测后有针对性调节,或者有兴趣的朋友可以多尝试多试听不同位置的区别。
低通滤波调节,低音炮上具备一个滤波器。低通滤波器一般调节范围在50Hz到160Hz左右的连续或分段调节,当你调节到70Hz的设定上,低频电平讯号在超音炮上就会表现出70Hz以下的频率。也就是说,当调节到X Hz时,低音炮就能放出X Hz以下频率的声音。
当然,倘若是更高端的产品,可选选项也会更加丰富,针对不同空间的处理更灵活、更专业,所能带来的效果和区别当然也更惊喜。
总结
发烧圈有句俗语”低音炮是影院的灵魂”,足见其在影院中的地位,影院的气势、场面的动态、声场的连贯、中低频的衔接都来自于它,所以当你对你的影院目前表现不够理想的时候,不妨考虑一门好炮。
-
·
影响声音播放有哪些环境因素?
(作者:百宝城 时间:2018-12-20 17:22:39 点击数: 683)
- 收藏
-
我们在品鉴一套音响的音质时,最关注的是电子器材、喇叭、线材等硬体因素,其实还有许多不易被我们察觉其它因素;喇叭的声音回输、外界震动、聆听环境的谐振、聆听室的声学特性。
1、喇叭声音反馈:
当听音响时,喇叭发出的声波会震动墙壁、屋顶和地面,甚至有部分直接或间接会冲击音响器材,这些震动经由不同途径;例如,音响机架、空气等,以不同的速度和强度先后返馈到器材上,引起器材震动并产生自身的谐振,导致运作中的音响系统在电子线路方面产生了微妙的电子流变化而令声音改变,使声音略显模糊造成轻微失真。
2、环境的共振特性:
物体根据材质、形状、大小的不同而有其固有的谐振频率,当外来的振动能量加到此物体上时,如果频率等于或接近其谐振频率,该物体就会同步剧烈振动成为谐振。
聆听环境的谐振更加复杂,如果音乐频率接近房间的固有频率就会产生谐振,若用频谱测试分析仪进行测试,房间的频率响应特性曲线会像舞龙般高低起伏不平,无论您用的音响器材如何高品质,必将受制于这房间的音响特性。谐振现象在大部分情况下是有害的,它会增加噪音、加速设备的疲劳损坏。
有何办法消除或降低聆听房间的固有谐振,使其频率响应呈现平直,令音响系统有出色的声音呢?这是物体的物理特性不能消除,只能削弱。例如长方形的房间比较容易处理共振,而正方形房间会产生驻波特别难处理。也有发烧友认为等三角近场聆听也可减少些低频谐振的影响。
3、外界的震动因素:
如果聆听室邻近路边、工厂、建筑地盘、升降机房、水泵房之类,非常容易受到噪音或超低频的干扰,音响器材由于受到震动而导致声音模糊不清。
撞到这种问题,要不就搬迁,或者以模拟录音室设计,在屋内做一个与屋外隔离的中空房间,做足隔音措施,才可减轻或杜绝外界震动带来的影响。
所说的聆听室声学特性,不仅包括房间比例、大小等,还函盖建造聆听室所用的材料、装修物料、布置、驻波、声反射、声衍射等带来的混响。一张沙发、一块窗帘都会将原聆听室的频率特性改变。有些简单的改变自己可预测或计算,但更复杂的则借助专业测量。
假如聆听室之后有进入物的变动,它的声学特性也会跟随改变,甚至影响音响系统的摆放和调校,反射或吸声材料布置的增减。所以,建议发烧友在摆放和调校音响时,也要考虑到房间的声学特性,多选用对声音影响小的家具、装饰品,并用RGP板、Room Ture、Sonex、扩散板之类的专业材料去调整房间声学特性。
声音,是非常敏感,由于人的生理特性限制,我们经常捕捉不到一些声音细节和变化。要达到理想的声音重播,单单用声学仪器测量和调校有些片面性,得结合个人的聆听习惯,在音响器材的声音播放和环境噪音影响中找到适当平衡点,调出自己喜欢或迎合大众口味的声音,这是一个颇难搞的问题。
-
·
说说多声道关于0.1低音之谜
(作者:百宝城 时间:2018-12-09 16:22:53 点击数: 870)
- 收藏
-
声道的音频包含有5个分离的、全频带的主声道(左、中置、右、左环绕及右环绕),再加上一个可选的、有限频带的低频效果声道(LFE)。与主声道不同的是,LFE声道只传送低音信息(<120Hz),并且对其他声轨还音的定位没有直接的影响。它的目的是为了补充节目中的低音内容,或者可以说是为了减少其他声道在低音部分的负担。
历史上LFE声道原本使用在70毫米电影胶片上,它为摆放在银幕后面一只或数量更多的超重低音扬声器提供分离的辅助的低音信息。这样无须升级影院中现有的3个前置主声道的功放和音箱喇叭,便能产生更加深沉的低频效果。
同样这也意味着在70毫米电影胶片音轨的峰值储量不会在低频段有所增加,也就不会降低电影在中高频段的响度。最后在现有的影院播放处理系统中,无需增加额外的分频器措施来将左声道、中置声道及右声道中的低音信息改道进入超重低音扬声器。通过70毫米胶片已有的空间传送分离的低频效果信号的优势是明显的,其被证实在补偿电影声轨的低音能力上是最直接、最方便、最经济的方法。
为了维持与现有影院设备的相容性,企业(影院)和家用杜比和dts格式音轨包含了一个分离的LFE声道。当影片录制为家用杜比或dts格式时,採用的是通常相同的格式也包括LFE声轨。重播多声道音频的杜比或dts产品必须包含LFE声道,并按符合声学要求的比例与来自其他声道的低音信息混合后进行还音。
LFE不等同于主音箱低音喇叭信息,有人提出我使用落地音箱自带大尺寸低音喇叭单元那是不是不需要低音炮?这里我详细说说,杜比和dts的节目也许包括只含低频信息的LFE声道,但是这个声道并不直接等同于超重低音扬声器输出。节目本身也许包含LFE声道,但是功放可以不提供超重低音扬声器输出,这是因为所有的低音信息(包括LFE声道)可以通过主扬声器来还音。反过来同样成立,节目本身可以不包含LFE声道,然而解码器(功放)可以提供超重低音扬声器输出,这是因为部分或全部的主扬声器的还音能力不足,无法重播节目中的低音信息。
LFE声道与超重低音扬声器输出的差异在于:LFE声道是用来在杜比和dts的节目中携带额外的低音信息,而超重低音扬声器输出是用来表现节目中部分或全部的低音信息。LFE声道携带的额外的低音信息是作为主声道中的低音资讯的补充。LFE声道在节目制作过程中,其SPL(声压级)被标定为比任何前置声道高10dB。即使所有的三个前置音箱拥有足够的还音能力,LFE声道也可以单独提供足够的低音让影院的超重低音扬声器能够与前置的声道达到声场的平衡。这就使得制片商可以将强劲的低音转移至LFE声道,从而减少各个主声道的负担。
在绝大多数的影片要求的情况下,即左声道、中置声道及右声道的低音完全载入的情况,LFE声道还能将低音的强度提高6dB。另一方面超重低音扬声器输出也可以认为是将来自所有六个声道的低音信息选择在通过超重低音扬声器输出(通过分频设定)。这种特殊将低音信息混合后通过超重低音扬声器来表现的方法称为低音管理。打个比方说除了重播来自LFE声道的低音外,0.1的低音炮输出还可以在中置及环绕声道扬声器的低音还音能力不足的情况下包含来自这些声道的低音信息输出。